REVISIONES, METAANÁLISIS Y ENSAYOS
Dengue: revisión de la literatura actual y perspectivas a futuro
Dengue: review of the current literature and future perspectives
Juan Alberto Ríos Nava (1), José Alejandro Rodríguez García (1).
Afiliaciones:
1. Licenciatura en Medicina, Departamento de Atención a la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Xochimilco. Ciudad de México, México.
Correspondencia:
Juan Alberto Ríos Nava: albertoriosnava@gmail.com
2021 © Ríos JA, Rodríguez JA. Dengue: revisión de la literatura actual y perspectivas a futuro.
Esta obra se distribuye bajo una Licencia Creative Commons Reconocimiento-NoComercial 4.0 Internacional (CC BY-NC).
Conflictos de Interés: Ninguno.
Financiamiento: No se recibió apoyo financiero de personas físicas ni morales.
Sugerencia de cita:
Ríos JA, Rodríguez JA. Dengue: revisión de la literatura actual y perspectivas a futuro. Rev Cadena Cereb. 2021; 5(2): 59-68.
Recibido: 24 de enero de 2021.
Aceptado: 3 de marzo de 2021.
Publicado: 3 de marzo de 2021.
RESUMEN
El dengue es una enfermedad infecciosa, estacional y con potencial epidémico causada por diferentes serotipos del virus del dengue (DENV 1-4) que son transmitidos a los humanos por el mosquito Aedes aegypti y Aedes albopictus. Es una enfermedad con una alta carga de incidencia mundial ya que afecta aproximadamente a 400 millones de personas al año. Es un problema importante, debido a que la mayor tasa de incidencia es en la edad productiva (entre los 25 y 44 años). El diagnóstico es principalmente clínico, pero las pruebas de laboratorio pueden ser útiles, sobre todo si se buscan anticuerpos específicos como IgG e IgM. El aislamiento viral, la detección de ARN viral o de antígenos como el NS1 son otras pruebas de laboratorio que ayudan al diagnóstico. El síndrome clínico clásico de dengue se presenta con un aumento abrupto de temperatura que se puede acompañar de astenia, cefalea, mialgias, artralgias, náuseas, vómito, diarrea y rash. Las fases que comúnmente siguen al periodo de infección son la febril, crítica y de resolución. El tratamiento es sintomático, siendo los antipiréticos y la hidratación las bases de este. Aunque actualmente no hay un antiviral que trate la infección, existen muchos en investigación. El objetivo de esta revisión es proveer información actual sobre el estado de esta enfermedad, así como las futuras opciones terapéuticas que actualmente se encuentran en investigación.
Palabras Clave:
Aedes; fiebre; vacuna; virus.
ABSTRACT
Dengue is an infectious, seasonal and potentially epidemic disease caused by different serotypes of the dengue virus (DENV 1-4), which are transmitted to the human by the Aedes aegypti and Aedes albopictus mosquito. It is a disease with a high incidence of cases world-wide, as it affects approximately 400 million people per year. It is an important problem because the highest incidence is during the productive age (between 25 and 44 years). The diagnosis is mainly clinical, although laboratory tests can be useful, especially if specific antibodies like the IgG and IgM are looked for. The viral isolation, the detection of the viral RNA or antigen detection (like the NS1) are other tests that help for diagnosis. The classic clinical dengue syndrome presents with sudden temperature rising and might present with asthenia, headache, myalgias, arthralgias, nausea, vomit, diarrhea and rash. The common phases after the incubation period are the febrile, critical and recovery. The treatment is symptomatic: antipyretics, and hydration are the main bases. Although there is no antiviral treatment for this infection, there is a lot of research for antiviral treatment. The purpose of this review is to provide current information about this disease, as well as the possible future therapeutic alternatives being currently researched.
Keywords:
Aedes; fever; vaccine; virus.
REFERENCIAS
1. Guzmán MG, Harris E. Dengue. Lancet. 2015; 385(9966): 453-65. DOI: 10.1016/S0140-6736(14)60572-9
2. Khetarpal N, Khanna I. Dengue Fever: Causes Complications, and Vaccine Strategies. J Immunol Res. 2016; 2016: 680398. DOI: 10.1155/2016/6803098
3. Katzelnick LC, Coloma J, Harris E. Dengue: knowledge gaps, unmet needs, and research priorities. Lancet Infect Dis. 2017; 17(3): e88-e100. doi: 10.1016/S1473-3099(16)30473-X
4. Uno N, Ross TM. Dengue virus and the host innate immune response. Emerg Microbes Infect. 2018; 7(1): 167. DOI: 10.1038/s41426-018-0168-0
5. Guo C, Zhou Z, Wen Z, Liu Y, Zeng C, Xiao D, et al. Global Epidemiology of Dengue Outbreaks in 1990-2015: A Sistematic Review and Meta-analysis. Front Cell Infect Microbiol. 2017; 7: 317. DOI: 10.3389/fcimb.2017.00317
6. Lin RJ, Lee TH, Leo YS. Dengue in the elderly: a review. Expert Rev Anti Infect Ther. 2017; 15(8): 729-35. DOI: 10.1080/14787210.2017.1358610
7. Wilder-Smith A, Ooi EE, Horstick O, Wills B. Dengue. Lancet. 2019; 393(10169): 350-63. DOI: 10.1016/S0140-6736(18)32560-1
8. Ramos-Castañeda J, Barreto dos Santos F, Martínez-Vega R, Galvao de Araujo JM, Joint G, Sarti E. Dengue in Latin America: Systematic Review of Molecular Epidemiological Trends. PLoS Negl Trop Dis. 2017; 11(1): 1-24. DOI: 10.1371/journal.pntd.0005224
9. Frank B. BlankMap-World-Flattened [Internet]. Wikimedia Commons. 2021 [26 de febrero del 2021]. Disponible en: https://commons.wikimedia.org/wiki/File:BlankMap-World-Flattened.svg
10. Naish S, Dale P, Mackenzie JS, McBride J, Mengersen K, Tong S. Climate change and dengue: a critical and systematic review of quantitative modelling approaches. BMC Infect Dis. 2014; 14: 167. DOI: 10.1186/1471-2334-14-167
11. Salles TS, Sá-Guimarães TE, De Alvarenga ESL, Guimarães-Ribeiro V, De Meneses MDF, De Castro-Salles PF, et al. History, epidemiology and diagnostics of dengue in the American and Brazilian contexts: a review. Parasit Vectors. 2018; 11(1): 264. DOI: 10.1186/s13071-018-2830-8
12. Dehesa E, Gutiérrez AFA. Dengue: actualidades y características epidemiológicas en México. Rev Med UAS. 2019; 3(9): 159-70. DOI: 10.28960/revmeduas.2007-8013.v9.n3.006
13. Ceballos-Liceaga SA, Carbajal-Sandoval G, Osorno-Rasso M. Panorama epidemiológico de dengue. Semana Epidemiológica 53, 2020 [web]. México: Secretaría de Salud; 2020 [revisado 4 de enero del 2021; acceso 22 de enero del 2021]. Disponible en: https://www.gob.mx/cms/uploads/attachment/file/604556/Pano_dengue_53_2020.pdf
14. Grove J, Marsh M. The cell biology of receptor-mediated virus entry. J Cell Biol. 2011; 195(7): 1071-82. DOI: 10.1083/jcb.201108131
15. Casasnovas JM. Virus-receptor interactions and receptor-mediated virus entry into host cells. Subcell Biochem. 2013; 68: 441-66. DOI: 10.1007/978-94-007-6552-8_15
16. Mukhopadhyay S, Kuhn RJ, Rossmann MG. A structural perspective of the flavivirus life cycle. Nat Rev Microbiol. 2005; 3(1): 13-22. DOI: 10.1038/nrmicro1067
17. Laureti M, Narayanan D, Rodriguez-Andres J, Fazakerley JK, Kedzierski L. Flavivirus Receptors: Diversity, Identity, and Cell Entry. Front Immunol. 2018; 9: 2180. DOI: 10.3389/fimmu.2018.02180
18. Hidari KI, Suzuki T. Dengue virus receptor. Trop Med Health. 2011; 39(Supl. 4): 37-43. DOI: 10.2149/tmh.2011-S03
19. Guzman MG, Gubler DJ, Izquierdo A, Martinez E, Halstead SB. Dengue infection. Nat Rev Dis Primers. 2016; 2: 16055. DOI: 10.1038/nrdp.2016.55
20. Cruz-Oliveira C, Freire JM, Conceição TM, Higa LM, Castanho MA, Da Poian AT. Receptors and routes of dengue virus entry into the host cells. FEMS Microbiol Rev. 2015; 39(2): 155-70. DOI: 10.1093/femsre/fuu004
21. Dejarnac O, Hafirassou ML, Chazal M, Versapuech M, Gaillard J, Perera-Lecoin M, et al. TIM-1 Ubiquitination Mediates Dengue Virus Entry. Cell Rep. 2018; 23(6): 1779-93. DOI: 10.1016/j.celrep.2018.04.013
22. Che P, Tang H, Li Q. The interaction between claudin-1 and dengue viral prM/M protein for its entry. Virology. 2013; 446(1-2): 303-13. DOI: 10.1016/j.virol.2013.08.009
23. Colpitts CC, Baumert TF. Claudins in viral infection: from entry to spread. Pflugers Arch. 2017; 469(1): 27-34. DOI: 10.1007/s00424-016-1908-4
24. Soe HJ, Khan AM, Manikam R, Samudi Raju C, Vanhoutte P, Sekaran SD. High dengue virus load differentially modulates human microvascular endothelial barrier function during early infection. J Gen Virol. 2017; 98(12): 2993-3007. DOI: 10.1099/jgv.0.000981
25. Tawar RG, Colpitts CC, Lupberger J, El-Saghire H, Zeisel MB, Baumert TF. Claudins and pathogenesis of viral infection. Semin Cell Dev Biol. 2015; 42: 39-46. DOI: 10.1016/j.semcdb.2015.04.011
26. Byk LA, Iglesias NG, De Maio FA, Gebhard LG, Rossi M, Gamarnik AV. Dengue Virus Genome Uncoating Requires Ubiquitination. mBio. 2016; 7(3): e00804-16. DOI: 10.1128/mBio.00804-16
27. Organización Panamericana de la Salud. Dengue guías para la atención de enfermos en la Región de las Américas. 2ª Ed. Washington D. C.: Organización Mundial de la Salud; 2016.
28. Butthep P, Chunhakan S, Yoksan S, Tangnararatchakit K, Chuansumrit A. Alteration of cytokines and chemokines during febrile episodes associated with endothelial cell damage and plasma leakage in dengue hemorrhagic fever. Pediatr Infect Dis J. 2012; 31(12): e232-8. DOI: 10.1097/INF.0b013e31826fd456
29. Malavige GN, Ogg GS. Pathogenesis of vascular leak in dengue virus infection. Immunology. 2017; 151(3): 261-9. DOI: 10.1111/imm.12748
30. Halstead S. Recent advances in understanding dengue. F1000Res. 2019 Jul 31;8:F1000 Faculty Rev-1279. DOI: 10.12688/f1000research.19197.1
31. Appanna R, Wang SM, Ponnampalavanar SA, Lum LC, Sekaran SD. Cytokine factors present in dengue patient sera induces alterations of junctional proteins in human endothelial cells. Am J Trop Med Hyg. 2012; 87(5): 936-42. DOI: 10.4269/ajtmh.2012.11-0606
32. Furuta T, Murao LA, Lan NT, Huy NT, Huong VT, Thuy TT, et al. Association of mast cell-derived VEGF and proteases in Dengue shock syndrome. PLoS Negl Trop Dis. 2012; 6(2): e1505. DOI: 10.1371/journal.pntd.0001505
33. Rathore AP, Mantri CK, Aman SA, Syenina A, Ooi J, Jagaraj CJ, et al. Dengue virus-elicited tryptase induces endothelial permeability and shock. J Clin Invest. 2019; 129(10): 4180-93. DOI: 10.1172/JCI128426
34. Soo KM, Khalid B, Ching SM, Chee HY. Meta-Analysis of Dengue Severity during Infection by Different Dengue Virus Serotypes in Primary and Secondary Infections. PLoS One. 2016;11(5): e0154760. DOI: 10.1371/journal.pone.0154760
35. Kulkarni R. Antibody-Dependent Enhancement of Viral Infections. En: Bramhachari P. (ed.). Dynamics of Immune Activation in Viral Diseases. Singapore: Springer; 2019. 9-41. DOI: 10.1007/978-981-15-1045-8_2
36. Nimmerjahn F, Ravetch JV. Fcγ receptors as regulators of immune responses. Nat Rev Immunol. 2008; 8(1), 34-47. DOI: 10.1038/nri2206
37. Sargun SW, Mohaammad AA, Jahanzeb L. Chapter 7: Clinical manifestations and laboratory diagnosis. En: Qureshi A, Saeed O. Dengue virus disease. 1a Ed. E.U.A.: Academic Press; 2020: 115-37. DOI: 10.1016/B978-0-12-818270-3.00007-2
38. Whitehorn J, Simmons CP. The pathogenesis of dengue. Vaccine. 2011; 29(42): 7221-8. DOI: 10.1016/j.vaccine.2011.07.022
39. Lovera D, Martínez-Cuellar C, Galeano F, Amarilla S, Vazquez C, Arbo A. Clinical manifestations of primary and secondary dengue in Paraguay and its relation to virus serotype. J Infect Dev Ctries. 2019; 13(12): 1127-34. DOI: 10.3855/jidc.11584
40. Huy BV, Hoa LNM, Thuy DT, Van Kinh N, Ngan TTD, Duyet LV, et al. Epidemiological and Clinical Features of Dengue Infection in Adults in the 2017 Outbreak in Vietnam. Biomed Res Int. 2019; 2019: 3085827. DOI: 10.1155/2019/3085827
41. Verhagen LM, de Groot R. Dengue in children. J Infect. 2014; 69 (Supl. 1): S77-86. DOI: 10.1016/j.jinf.2014.07.020
42. Sam SS, Omar SF, Teoh BT, Abd-Jamil J, AbuBakar S. Review of Dengue hemorrhagic fever fatal cases seen among adults: a retrospective study. PLoS Negl Trop Dis. 2013; 7(5): e2194. DOI: 10.1371/journal.pntd.0002194
43. Horstick O, Jaenisch T, Martinez E, Kroeger A, See LLC, Farrar J, et al. Comparing the usefulness of the 1997 and 2009 WHO dengue case classification: a systematic literature review. Am J Trop Med Hyg. 2014; 91(3): 621-34. DOI: 10.4269/ajtmh.13-0676
44. Somkijrungroj T, Kongwattananon W. Ocular manifestations of dengue. Curr Opin Ophthalmol. 2019; 30(6): 500-5. DOI: 10.1097/ICU.0000000000000613
45. Muller DA, Depelsenaire AC, Young PR. Clinical and Laboratory Diagnosis of Dengue Virus Infection. J Infect Dis. 2017; 215(Supl. 2): S89-S95. DOI: 10.1093/infdis/jiw649
46. Low JG, Ooi EE, Vasudevan SG. Current Status of Dengue Therapeutics Reserch and Development. J Infect Dis. 2017; 215(Supl. 2): S96-S102. DOI: 10.1093/infdis/jiw423
47. Chew M-F, Poh K-S, Poh C-L. Peptides as Therapeutics Agents for Dengue Virus. Int J Med Sci. 2017; 14(13): 1342-59. DOI: 10.7150/ijms.21875
48. Jans DA, Wagstaff KM. Ivermectin as a Broad-Spectrum Host-Directed Antiviral: The Real Deal? Cells. 2020; 9(9): 2100. DOI: 10.3390/cells9092100
49. Teixeira RR, Pereira WL, Oliveira AF, Da Silva AM, De Oliveira AS, Da Silva ML, et al. Natural products as source of potential dengue antivirals. Molecules. 2014; 19(6): 8151-76. DOI: 10.3390/molecules19068151
50. Rajapakse S, De Silva NL, Weeratunga P, Rodrigo C, Sigera C, Fernando SD. Carica papaya extract in dengue: a systematic review and meta-analysis. BMC Complement Altern Med. 2019; 19(1): 265. DOI: 10.1186/s12906-019-2678-2
51. Wong RR, Abd-Aziz N, Affendi S, Poh CL. Role of microRNAs in antiviral responses to dengue infection. J Biomed Sci. 2020; 27(1): 4. DOI: 10.1186/s12929-019-0614-x
52. Esu E, Lenhart A, Smith L, Horstick O. Effectiveness of peridomestic space spraying with insecticide on dengue transmission; systematic review. Trop Med Int Health. 2010; 15(5): 619-31. DOI: 10.1111/j.1365-3156.2010.02489.x
53. Halstead S. Recent advances in understanding dengue. F1000Res. 2019; 8: F1000 Faculty Rev-1279. DOI: 10.12688/f1000research.19197.1
54. Swaminathan S, Khanna N. Dengue vaccine development: Global and Indian scenarios. Int J Infect Dis. 2019; 84S: S80-S86. DOI: 10.1016/j.ijid.2019.01.029
55. US National Library of Medicine. ClinicalTrials.gov. United States. National Institute of Allergy and Infectious Diseases (NIAID). Revisado: 18 de febrero de 2016; Acceso: 18 de enero de 2021. Disponible en: https://clinicaltrials.gov/ct2/show/NCT02684383?cond=Dengue&draw=2&rank=5
56. US National Library of Medicine. ClinicalTrials.gov. United States. National Taiwan University Hospital. Revisado: 21 de octubre de 2019; Acceso: 18 de enero de 2021. Disponible en: https://clinicaltrials.gov/ct2/show/NCT04133987?cond=Dengue&draw=2&rank=3
57. US National Library of Medicine. ClinicalTrials.gov. United States. National Institute of Allergy and Infectious Diseases (NIAID). Revisado: 25 de Agosto de 2016; Acceso: 18 de enero de 2021. Disponible en: https://clinicaltrials.gov/ct2/show/NCT02879266?cond=Dengue&draw=2&rank=6
58. US National Library of Medicine. ClinicalTrials.gov. United States. National Institute of Allergy and Infectious Diseases (NIAID). Revisado: 9 de febrero de 2016; Acceso: 18 de enero de 2021. Disponible en: https://clinicaltrials.gov/ct2/show/NCT02678455?cond=Dengue&draw=2&rank=9
59. Whitehead SS, Durbin AP, Pierce KK, Elwood D, McElvany BD, Fraser EA, et al. In a randomized trial, the live attenuated tetravalent dengue vaccine TV003 is well-tolerated and highly immunogenic in subjects with flavivirus exposure prior to vaccination. PLoS Negl Trop Dis. 2017; 11(5): e0005584. DOI: 10.1371/journal.pntd.0005584
60. Angelo MA, Grifoni A, O'Rourke PH, Sidney J, Paul S, Peters B, et al. Human CD4+T Cell Responses to an Attenuated Tetravalent Dengue Vaccine Parallel Those Induced by Natural Infection in Magnitude, HLA Restriction, and Antigen Specificity. J Virol. 2017; 91(5): e02147-16. DOI: 10.1128/JVI.02147-16
61. López-Medina E, Biswal S, Saez-Llorens X, Borja-Tabora C, Bravo L, Sirivichayakul C, et al. Efficacy of a dengue vaccine candidate (TAK-003) in healthy children and adolescents two years after vaccination. J Infect Dis. 2020: jiaa761. DOI: 10.1093/infdis/jiaa761
62. US National Library of Medicine. ClinicalTrials.gov. United States. Takeda. Revisado: 20 de octubre de 2020; Acceso: 18 de enero de 2020. Disponible en: https://www.clinicaltrials.gov/ct2/show/NCT03423173?term=tak-003&draw=2&rank=2
63. Beckett CG, Tjaden J, Burgess T, Danko JR, Tamminga C, Simmons M, et al. Evaluation of a prototype dengue-1 DNA vaccine in a Phase 1 clinical trial. Vaccine. 2011; 29(5): 960-8. DOI: 10.1016/j.vaccine.2010.11.050
64. FDA. Dengvaxia Statical Review [sede web]. Fda.gov. 2021 [acceso 24 de enero de 2021]. Disponible en: https://www.fda.gov/media/125481/download
65. Fuller DH, Berglund P. Amplifying RNA Vaccine Development. N Engl J Med. 2020; 382(25): 2469-71. DOI: 10.1056/NEJMcibr2009737
66. Jans DA, Martin AJ. Nucleocytoplasmic Trafficking of Dengue Non-structural Protein 5 as a Target for Antivirals. Adv Exp Med Biol. 2018; 1062: 199-213. DOI: 10.1007/978-981-10-8727-1_15
67. Organización Panamericana de la Salud. Control del Aedes aegypti en el escenario de transmisión simultánea de COVID-19. Washington D. C.: Organización Mundial de la Salud; 2020 [Revisado 2020; Acceso 22 de enero del 2021]. Disponible en: https://iris.paho.org/bitstream/handle/10665.2/52020/OPSCDEVTCOVID19200010_spa.pdf?sequence=1&isAllowed=y