REVISIONES, METAANÁLISIS Y ENSAYOS
Importancia de la interacción del endotelio y la vitamina D en la cavidad oral para la progresión de la “enfermedad crítica” por COVID-19
Importance of endothelial and vitamin D interaction in oral cavity for the progression of "critical illness" by COVID-19
Julieta Anabell Díaz-Juárez (1), Gustavo Tenorio-Torres (1).
Afiliaciones:
1. Departamento de Atención a la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Xochimilco. Ciudad de México, México.
Correspondencia:
Julieta Anabell Díaz-Juárez: anabelldij@gmail.com
2022 © Díaz-Juárez JA, Tenorio-Torres G. Importancia de la interacción del endotelio y la vitamina D en la cavidad oral para la progresión de la “enfermedad crítica” por COVID-19.
Esta obra se distribuye bajo una Licencia Creative Commons Reconocimiento-NoComercial 4.0 Internacional (CC BY-NC).
Conflictos de Interés: Ninguno.
Financiamiento: Ninguno.
Sugerencia de cita:
Díaz-Juárez JA, Tenorio-Torres G. Importancia de la interacción del endotelio y la vitamina D en la cavidad oral para la progresión de la “enfermedad crítica” por COVID-19. Rev Cadena Cereb. 2022; 6(1): 22-27.
Recibido: 5 de diciembre de 2021.
Aceptado: 13 de diciembre de 2021.
Publicado: 23 de febrero de 2022.
RESUMEN
La enfermedad del coronavirus 2019 (COVID-19), que comenzó en Wuhan, China, en diciembre de 2019, ha provocado una pandemia que representa una amenaza mundial para la salud pública. El virus SARS-CoV-2 es una cepa de coronavirus altamente transmisible que se propaga principalmente a través de gotitas respiratorias. De acuerdo con las investigaciones científicas basadas en datos clínicos se ha propuesto que este patógeno desencadena una “tormenta de citocinas”, la cual conduce a manifestaciones clínicas deletéreas que afectan al endotelio vascular causando la denominada “enfermedad crítica” por COVID-19. En esta etapa de la enfermedad, los pacientes infectados presentan un estado agudo de alteraciones hemodinámicas que se asocian a una elevada mortalidad. Por lo tanto, es una necesidad urgente encontrar un tratamiento para evitar la progresión de la enfermedad. Esta revisión tiene como objetivo enfatizar la importancia que tiene la vitamina D en la regulación de los procesos inmunológicos que se desencadenan en la cavidad oral como la principal vía de entrada para la infección del virus SARS-CoV-2, así como su participación para disminuir el daño endotelial y la progresión a un estado de trombosis que interfiere con la vida del paciente.
Palabras Clave:
COVID-19; virus SARS-CoV-2; vitamina D; disfunción endotelial.
ABSTRACT
Coronavirus 2019 disease (COVID-19) -which began in Wuhan, China, on December 2019-, has caused a pandemic that poses a global threat to public health. SARS-CoV-2 virus is a highly transmissible strain of coronavirus that spreads primarily through respiratory droplets. According to scientific research based on clinical data, it has been proposed that this pathogen triggers a “cytokine storm”, which leads to deleterious clinical manifestations that affect the vascular endothelium causing the so-called “critical illness” by COVID-19. In this stage of the disease, infected patients present an acute state of hemodynamic alterations that are associated with high mortality. Therefore, it is an urgent need to find a treatment to prevent progression of this disease. This review aims to emphasize the importance of vitamin D in regulation of immunological processes that are triggered in oral cavity as the main route of entry for SARS-CoV-2 virus infection, as well as its participation in reducing endothelial damage and the progression to a state of thrombosis that interferes with the life of the patient.
Keywords:
COVID-19; SARS-CoV-2 virus; vitamin D; endothelial dysfunction.
REFERENCIAS
1. Lechien JR, Chiesa-Estomba CM, De Siati DR, Horoi M, Le Bon SD, Rodriguez A. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020; 277: 2251-2261. DOI: 10.1007/s00405-020-05965-1
2. Eghbali ZR, Hosseinzadeh P. COVID-19 from the perspective of dentists: A case report and brief review of more than 170 cases. Dermatol Ther. 2021; 34(1): e14717. DOI: 10.1111/dth.14717
3. Andrews E, Lezotte J, Ackerman AM. Lingual compression for acute macroglossia in a COVID-19 positive patient. BMJ Case Rep. 2020 ;13(7): e237108. Disponible en: https://casereports.bmj.com/content/13/7/e237108
4. Brandão TB, Gueiros LA, Melo TS, Prado-Ribeiro AC, Nesrallah ACFA, Prado GVB. Oral lesions in patients with SARS-CoV-2 infection: could the oral cavity be a target organ? Oral Surg Oral Med Oral Pathol Oral Radiol. 2021; 131(2): e45-e51. DOI: 10.1016/j.oooo.2020.07.014
5. Riad A, Kassem I, Hockova B, Badrah M, Klugar M. Halitosis in COVID-19 patients. Spec Care Dentist. 2021; 41(2): 282-285. DOI: 10.1111/scd.12547
6. Iranmanesh B, Khalili M, Amiri R, Zartab H, Aflatoonian M. Oral manifestations of COVID-19 disease: A review article. Dermatol Ther. 2021; 34(1): e14578. DOI: 10.1111/dth.14578
7. Díaz-Rodríguez M, Jimenez-Romera A, Villarroel M. Oral manifestations associated with COVID-19. Oral Dis. 2020; Jul 22: 10. DOI: 10.1111/odi.13555
8. Galván-Casas C, Català A, Carretero-Hernández G, Rodríguez-Jiménez P, Fernández-Nieto D, Rodríguez-Villa LA. Classification of the cutaneous manifestations of COVID-19: A rapid prospective nationwide consensus study in Spain with 375 cases. Br J Dermatol. 2020; 183(1): 71–77. DOI: 10.1111/bjd.19163
9. Jimenez-Cauhe J, Ortega-Quijano D, de Perosanz-Lobo D, Burgos-Blasco P, Vañó-Galván S, Fernandez-Guarino M. Enanthem in Patients With COVID-19 and Skin Rash. JAMA Dermatol. 2020; 156(10): 1134-1136. DOI: 10.1001/jamadermatol.2020.2550
10. Pitones-Rubio V, Chavez-Cortez EG, Hurtado-Camarena A, Gonzalez-Rascon A, Serafin-Higuera N. Is periodontal disease a risk factor for severe COVID-19 illness? Med Hypotheses. 2020; 144: 109969. DOI: 10.1016/j.mehy.2020.109969
11. Martineau AR, Jolliffe DA, Greenberg L, Aloia JF, Bergman P, Dubnov RG, et al. Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis. Health Technol Assess. 2019; 23(2): 1–44. DOI: 10.3310/hta23020
12. Dietrich T, Joshipura KJ, Dawson-Hughes B, Bischoff-Ferrari HA. Association between serum concentrations of 25-hydroxyvitamin D 3 and periodontal disease in the US population. Am J Clin Nutr. 2004; 80(1): 108–113. DOI: 10.1093/ajcn/80.1.108
13. Hiremath VP, Rao CB, Naik V, Prasad KV. Anti-inflammatory effect of vitamin D on gingivitis: a dose-response randomised control trial. Oral Health Prev Dent. 2013; 11(1): 61–69. DOI: 10.3290/j.ohpd.a29377
14. Cannell JJ, Vieth R, Umhau JC, Holick MF, Grant WB, Madronich S. Epidemic influenza and vitamin D. Epidemiol Infect. 2006; 134(6): 1129–1140. DOI: 10.1017/S0950268806007175
15. Mamani M, Muceli N, Ghasemi-Basir HR, Vasheghani M, Poorolajal J. Association between serum concentration of 25-hydroxyvitamin D and community-acquired pneumonia: a case-control study. Int J Gen Med. 2017; 13(10): 423–429. DOI: 10.2147/IJGM.S149049
16. Teymoori RM, Shokri F, Salimi V, Marashi SM. The interplay between vitamin D and viral infections. Rev Med Virol. 2019; 29(2): e2032. DOI: 10.1002/rmv.2032
17. Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL, et al. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients. 2020; 12(4): 988. DOI: 10.3390/nu12040988
18. Yancy CW. COVID-19 and African Americans. JAMA. 2020; 323(19): 1891-1892. DOI: 10.1001/jama.2020.6548
19. Aboughdir M, Kirwin T, Abdul KA, Wang B. Prognostic Value of Cardiovascular Biomarkers in COVID-19: A Review. Viruses. 2020; 12(5): 527. DOI: 10.3390/v12050527
20. Atkins GB, Jain MK, Hamik A. Endothelial differentiation: molecular mechanisms of specification and heterogeneity. Arterioscler Thromb Vasc Biol. 2011; 31(7): 1476–14. DOI: 10.1161/ATVBAHA.111.228999
21. Feletou M. The Endothelium: Part 1: Multiple Functions of the Endothelial Cells-Focus on Endothelium-Derived Vasoactive Mediators. Morgan & Claypool Life Sciences: San Rafael (CA), 2011. Available from: https://www.ncbi.nlm.nih.gov/books/NBK57149/
22. Goshua G, Pine AB, Meizlish ML, Chang CH, Zhang H, Bahel P, et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020; 7(8): e575–e582. DOI: 10.1016/S2352-3026(20)30216-7
23. Terpos E, Ntanasis-Stathopoulos I, Elalamy I, Kastritis E, Sergentanis TN, Politou M, et al. Hematological findings and complications of COVID-19. Am J Hematol. 2020; 95(7): 834–847. DOI: 10.1002/ajh.25829
24. Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review. J Am Coll Cardiol. 2020; 75(23): 2950–2973. DOI: 10.1016/j.jacc.2020.04.031
25. World Health Organization. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected—interim guidance, March 13, 2020. Acceso julio 26, 2020. Disponible en: https://www.who.int/publications/i/item/clinical-management-of-covid-19
26. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS. J Virol. 2020; 94(7): e00127-20. DOI: 10.1128/JVI.00127-20
27. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395(10224): 565–574. DOI: 10.1016/S0140-6736(20)30251-8
28. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019; 17(3): 181–192. DOI: 10.1038/s41579-018-0118-9
29. Hamming I, Timens W, Bulthuis M L, Lely A T, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004; 203(2): 631–637. DOI: 10.1002/path.1570
30. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181(2): 2.71E10–2.8E10. DOI: 10.1016/j.cell.2020.02.052
31. Oldham KM., Bowen P.E. Oxidative stress in critical care: Is antioxidant supplementation beneficial? J Am Diet Assoc. 1998; 98(9): 1001–1008. DOI: 10.1016/S0002-8223(98)00230-2
32. Cayatte AJ, Palacino JJ, Horten K, Cohen RA. Chronic inhibition of nitric oxide production accelerates neointima formation and impairs endothelial function in hypercholesterolemic rabbits. Arterioscler Thromb. 1994; 14(5): 753-759. DOI: 10.1161/01.atv.14.5.753
33. Daiber A, Xia N, Steven S, Oelze M, Hanf A, Kröler-Schön S, et al. New Therapeutic Implications of Endothelial Nitric Oxide Synthase (eNOS) Function/Dysfunction in Cardiovascular Disease. Int J Mol Sci. 2019; 20(1): 187. DOI: 10.3390/ijms20010187
34. Andrukhova O, Slavic S, Zeitz U, Riesen SC, Heppelmann MS, Ambrisko TD, et al. Vitamin D is a regulator of endothelial nitric oxide synthase and arterial stiffness in mice. Mol Endocrinol. 2014; 28(1): 53-64. DOI: 10.1210/me.2013-1252
35. Doroudi M, Schwartz Z, Boyan BD. Membrane-mediated actions of 1,25-dihydroxy vitamin D3: A review of the roles of phospholipase A2 activating protein and Ca2+/calmodulin-dependent protein kinase II. J Steroid Biochem Mol Biol. 2015; 147: 81–84. DOI: 10.1016/j.jsbmb.2014.11.002
36. Lundwall K, Jacobson SH, Jörneskog G, Spaak J. Treating endothelial dysfunction with vitamin D in chronic kidney disease: A meta-analysis. BMC Nephrol. 2018; 19(1): 247. DOI: 10.1186/s12882-018-1042-y
37. Codoñer-Franch P, Tavárez-Alonso S, Simó-Jordá R, Laporta-Martín P, Carratalá-Calvo A, Alonso-Iglesias E. Vitamin D status is linked to biomarkers of oxidative stress, inflammation, and endothelial activation in obese children. J Pediatr. 2012; 161(5): 848–854. DOI: 10.1016/j.jpeds.2012.04.046
38. Holick MF. Vitamin D deficiency. N Engl J Med. 2007; 357: 266–281. DOI: 10.1056/NEJMra070553
39. Giulietti A, Van Etten E, Overbergh L, Stoffels K, Bouillon R, Mathieu C. Monocytes from type 2 diabetic patients have a pro-inflammatory profile. 1,25-Dihydroxyvitamin D3 works as anti-inflammatory. Diabetes Res Clin Pract. 2007; 77(1) :47–57. DOI: 10.1016/j.diabres.2006.10.007
40. Kim DH, Meza CA, Clarke H, Kim JS, Hickner RC. Vitamin D and Endothelial Function. Nutrients. 2020;12(2):575. DOI: 10.3390/nu12020575
41. Bennouar S, Cherif AB, Kessira A, Bennouar DE, Abdi S. Vitamin D Deficiency and Low Serum Calcium as Predictors of Poor Prognosis in Patients with Severe COVID-19. J Am Coll Nutr. 2021; 40(2): 104–110. DOI: 10.1080/07315724.2020.1856013
42. Prietl B, Treiber G, Pieber TR, Amrein K. Vitamin D and immune function. Nutrients. 2013; 5(7): 2502–2521. DOI:: 10.3390/nu5072502
43. Charoenngam N, Holick MF. Immunologic Effects of Vitamin D on Human Health and Disease. Nutrients. 2020; 12(7): 2097. DOI: 10.3390/nu12072097
44. Jain A, Chaurasia R, Sengar NS, Singh M, Mahor S, Narain S. Analysis of vitamin D level among asymptomatic and critically ill COVID-19 patients and its correlation with inflammatory markers. Sci Rep. 2020; 10: 20191. DOI: 10.1038/s41598-020-77093-z
45. Thickett DR, Moromizato T, Litonjua AA, Amrein K, Quraishi SA, Lee-Sarwar KA, et al. Association between prehospital vitamin D status and incident acute respiratory failure in critically ill patients: A retrospective cohort study. BMJ Open Respir Res. 2015; 2(1): e000074. DOI: 10.1136/bmjresp-2014-000074
46. Morris G, Bortolasci CC, Puri BK, Olive L, Marx W, O’Neil A, et al. The pathophysiology of sars-cov-2: A suggested model and therapeutic approach. Life Sci. 2020; 258: 118166. DOI: 10.1016/j.lfs.2020.118166
47. McElvaney OJ, McEvoy NL, McElvaney OF, Carroll TP, Murphy MP, Dunlea DM, et al. Characterization of the Inflammatory Response to Severe COVID-19 Illness. Am J Respir Crit Care Med. 2020; 202(6): 812–821. DOI: 10.1164/rccm.202005-1583OC
48. Rondanelli M, Miccono A, Lamburghini S, Avanzato I, Riva A, Allegrini P, et al. Self-Care for Common Colds: The Pivotal Role of Vitamin D, Vitamin C, Zinc, and Echinacea in Three Main Immune Interactive Clusters (Physical Barriers, Innate and Adaptive Immunity) Involved during an Episode of Common Colds—Practical Advice on Dosages and on the Time to Take These Nutrients/Botanicals in order to Prevent or Treat Common Colds. Evid.-Based Complement. Evid Based Complement Alternat Med. 2018; 2018: 5813095. DOI: 10.1155/2018/5813095
49. Ghinai I, McPherson TD, Hunter JC, Kirking HL, Christiansen D, Joshi K, et al. First known person-to-person transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the USA. Lancet. 2020; 395(10230): 1137–1144. DOI: 10.1016/S0140-6736(20)30607-3
50. Hamner L, Dubbel P, Capron I, Ross A, Jordan A, Lee J, et al. High SARS-CoV-2 attack rate following exposure at a choir practice—Skagit County, Washington, March 2020. MMWR Morb Mortal Wkly Rep. 2020; 69: 606–610. DOI: 10.15585/mmwr.mm6919e6
51. Huang N, Pérez P, Kato T, Mikami Y, Okuda K, Gilmore RC, et al. SARS-CoV-2 infection of the oral cavity and saliva. Nat Med. 2021; 27(5): 892-903. DOI: 10.1038/s41591-021-01296-8
52. Dziedzic A, Wojtyczka R. The impact of coronavirus infectious disease 19 (COVID‐19) on oral health. Oral Dis. 2021; 27(Supl. 3): 703-706. DOI: 10.1111/odi.13359
53. González AN, Magaletskyy K, Carrillo PM, Masdemont BL, Ibarguren AM, Rodríguez MF, et al. Are Oral Mucosal Changes a Sign of COVID-19? A Cross-Sectional Study at a Field Hospital. Actas Dermosifiliogr. 2021; 112(7): 640-644. DOI: 10.1016/j.ad.2021.02.007
54. Ginde AA, Mansbach JM, Camargo CA. Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the Third National Health and Nutrition Examination Survey. Arch Intern Med. 2009; 169(4): 384–390. DOI: 10.1001/archinternmed.2008.560
55. Quraishi SA, Bittner EA, Blum L, Hutter MM, Camargo CA. Association between preoperative 25-hydroxyvitamin D level and hospital-acquired infections following Roux-en-Y gastric bypass surgery. JAMA Surg. 2014; 149(2): 112–118. DOI: 10.1001/jamasurg.2013.3176
56. Alipio M. Vitamin D Supplementation Could Possibly Improve Clinical Outcomes of Patients Infected with Coronavirus-2019 (COVID-2019) (April 8, 2020). Disponible en: https://ssrn.com/abstract=3571484, o https://doi.org/10.2139/ssrn.3571484
57. Rhodes JM, Subramanian S, Laird E, Kenny RA. Editorial: Low population mortality from COVID-19 in countries south of latitude 35 degrees North supports vitamin D as a factor determining severity. Aliment Pharmacol Ther. 2020; 51(12): 1434-1437. DOI: 10.1111/apt.15777